Replicative fitness of poliovirus can be modulated systematically by replacement of preferred capsid region codons with synonymous unpreferred codons. To determine the key genetic contributors to fitness reduction, we introduced different sets of synonymous codons into the capsid coding region of an infectious clone derived from the type 2 prototype strain MEF-1. Replicative fitness in HeLa cells, measured by plaque areas and virus yields in single-step growth experiments, decreased sharply with increased frequencies of the dinucleotides CpG (suppressed in higher eukaryotes and most RNA viruses) and UpA (suppressed nearly universally). Replacement of MEF-1 capsid codons with the corresponding codons from another type 2 prototype strain (Lansing), a randomization of MEF-1 synonymous codons, increased the %G؉C without increasing CpG, and reductions in the effective number of codons used had much smaller individual effects on fitness. Poliovirus fitness was reduced to the threshold of viability when CpG and UpA dinucleotides were saturated within and across synonymous codons of a capsid region interval representing only ϳ9% of the total genome. Codon replacements were associated with moderate decreases in total virion production but large decreases in the specific infectivities of intact poliovirions and viral RNAs. Replication of codon replacement viruses, but not MEF-1, was temperature sensitive at 39.5°C. Synthesis and processing of viral intracellular proteins were largely unaltered in most codon replacement constructs. Replacement of natural codons with synonymous codons with increased frequencies of CpG and UpA dinucleotides may offer a general approach to the development of attenuated vaccines with well-defined antigenicities and very high genetic stabilities.Diversification of genomic sequences is constrained in all biological systems. At the level of primary sequences, the range of variability in coding regions is restricted by the codon usage bias (CUB), whereby a subset of synonymous codons are preferentially used in translation (24,53,69). The intensity of the CUB and the specific set of preferred codons vary widely across biological systems (39). Intertwined with the CUB is the suppression of the dinucleotides CpG and TpA (or UpA in RNA viruses) in the genomes of higher eukaryotes (4,7,26,61) and many of their RNA viruses and small DNA viruses (28,49). Variation in the primary sequences of RNA virus genomes is further constrained by requirements to maintain essential secondary and higher-order structures (42, 54, 68).We previously described the modulation of the replicative fitness of the Sabin type 2 oral poliovirus vaccine (OPV) strain (Sabin 2) by systematically changing the CUB in the capsid region, replacing the naturally occurring preferred codons with an unpreferred synonymous codon (isocodon) for each of nine amino acids (8). We called our approach "codon deoptimization" to contrast with the process of codon optimization, which is frequently used to maximize expression of foreign proteins in he...