Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BackgroundMethods for accurately predicting the prognosis of patients with recurrent hepatolithiasis (RH) after biliary surgery are lacking. This study aimed to develop a model that dynamically predicts the risk of hepatolithiasis recurrence using a machine-learning (ML) approach based on multiple clinical high-order correlation data.Materials and methodsData from patients with RH who underwent surgery at five centres between January 2015 and December 2020 were collected and divided into training and testing sets. Nine predictive models, which we named the Correlation Analysis and Recurrence Evaluation System (CARES), were developed and compared using machine learning (ML) methods to predict the patients’ dynamic recurrence risk within 5 post-operative years. We adopted a k-fold cross validation with k = 10 and tested model performance on a separate testing set. The area under the receiver operating characteristic curve was used to evaluate the performance of the models, and the significance and direction of each predictive variable were interpreted and justified based on Shapley Additive Explanations.ResultsModels based on ML methods outperformed those based on traditional regression analysis in predicting the recurrent risk of patients with RH, with Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) showing the best performance, both yielding an AUC (Area Under the receiver operating characteristic Curve) of∼0.9 or higher at predictions. These models were proved to have even better performance on testing sets than in a 10-fold cross validation, indicating that the model was not overfitted. The SHAP method revealed that immediate stone clearance, final stone clearance, number of previous surgeries, and preoperative CA19-9 index were the most important predictors of recurrence after reoperation in RH patients. An online version of the CARES model was implemented.ConclusionThe CARES model was firstly developed based on ML methods and further encapsulated into an online version for predicting the recurrence of patients with RH after hepatectomy, which can guide clinical decision-making and personalised postoperative surveillance.
BackgroundMethods for accurately predicting the prognosis of patients with recurrent hepatolithiasis (RH) after biliary surgery are lacking. This study aimed to develop a model that dynamically predicts the risk of hepatolithiasis recurrence using a machine-learning (ML) approach based on multiple clinical high-order correlation data.Materials and methodsData from patients with RH who underwent surgery at five centres between January 2015 and December 2020 were collected and divided into training and testing sets. Nine predictive models, which we named the Correlation Analysis and Recurrence Evaluation System (CARES), were developed and compared using machine learning (ML) methods to predict the patients’ dynamic recurrence risk within 5 post-operative years. We adopted a k-fold cross validation with k = 10 and tested model performance on a separate testing set. The area under the receiver operating characteristic curve was used to evaluate the performance of the models, and the significance and direction of each predictive variable were interpreted and justified based on Shapley Additive Explanations.ResultsModels based on ML methods outperformed those based on traditional regression analysis in predicting the recurrent risk of patients with RH, with Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) showing the best performance, both yielding an AUC (Area Under the receiver operating characteristic Curve) of∼0.9 or higher at predictions. These models were proved to have even better performance on testing sets than in a 10-fold cross validation, indicating that the model was not overfitted. The SHAP method revealed that immediate stone clearance, final stone clearance, number of previous surgeries, and preoperative CA19-9 index were the most important predictors of recurrence after reoperation in RH patients. An online version of the CARES model was implemented.ConclusionThe CARES model was firstly developed based on ML methods and further encapsulated into an online version for predicting the recurrence of patients with RH after hepatectomy, which can guide clinical decision-making and personalised postoperative surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.