Curcumin is the main secondary metabolite of Curcuma longa and other Curcuma spp, and has been reported to have some potential in preventing and treating some physiological disorders. This study investigated the effect of curcumin in inhibiting high-fat diet and streptozotocin (STZ)-induced hyperglycemia and hyperlipidemia in rats. Twenty-six male Sprague-Dawley (SD) rats (170–190 g) were randomly divided into a standard food pellet diet group (Control group), a high-fat diet and streptozotocin group (HF + STZ group), and a high-fat diet combined with curcumin and STZ group (HF + Cur + STZ group). Compared with the HF + STZ group, the HF + Cur + STZ group exhibited significantly reduced fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (AST), and aspartate transaminase (ALT) levels, as well as liver coefficients. In the livers of these rats, the expression of malondialdehyde (MDA) and Bax was downregulated, whereas that of superoxide dismutase (SOD) and Bcl-2 was upregulated. Moreover, the liver histology of these rats was improved and resembled that of the control rats. These results suggest that curcumin prevents high-fat diet and STZ-induced hyperglycemia and hyperlipidemia, mainly via anti-oxidant and anti-apoptotic mechanisms in the liver.