Chronic liver diseases can lead to fibrotic changes that may progress to the development of cirrhosis, which poses a significant risk for morbidity and increased mortality rates. Metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), and viral hepatitis are prevalent liver diseases that may lead to cirrhosis. The advanced stages of cirrhosis can be further complicated by cancer development or end-stage liver disease and liver failure. Hence, early detection and diagnosis of liver fibrosis is crucial for preventing the progression to cirrhosis and improving patient outcomes. Traditionally, invasive liver biopsy has been considered the gold standard for diagnosing and staging liver fibrosis. In the last decade, research has focused on non-invasive methods, known as liquid biopsies, which involve the identification of disease-specific biomarkers in human fluids, such as blood. Among these alternative approaches, extracellular vesicles (EVs) have emerged as promising diagnostic and therapeutic tools for various diseases, including chronic liver diseases. EVs are released from stressed or damaged cells and can be isolated and quantified. Moreover, EVs facilitate cell-to-cell communication by transporting various cargo, and they have shown the potential to reduce the expression of profibrogenic markers, making them appealing tools for novel anti-fibrotic treatments. This review focuses on the impact of EVs in chronic liver diseases and exploring their potential applications in innovative therapeutic and diagnostic approaches.