The invasion of exotic, annual plant species is a leading contributor to ecological degradation in drylands globally, and the use of pre-emergent herbicide to control these species is common. Pre-emergent herbicides pose challenges for seed-based restoration due to toxicity to the seeds of desired species. Herbicide protection (HP) technologies pose a potential solution by using activated carbon seed treatments to protect desirable seeds from herbicide exposure. In the sagebrush steppe ecosystem of North America, we used an adaptive small plot design over three planting years to test for effects on seeding outcomes (seedling density and size) of large and small multi-seed HP pellets, several single-seed HP coatings, and carbon banding treatments at geographically dispersed sites for several perennial bunchgrasses and the keystone perennial shrub, Wyoming big sagebrush. We also compared different methods of seed delivery and litter pre-seeding management. Seeding success was low overall, especially for sagebrush, and it was clear that other, often less predictable barriers to establishment than herbicide exposure, such as inadequate spring moisture, were strong drivers of seeding outcomes. Despite this, HP treatments were associated with higher seedling density than bare seed in multiple instances, most notably for grasses. The large HP pellet occasionally outperformed the small HP pellet, and several HP coatings performed similarly to the small pellet. Surprisingly, we did not see consistent negative effects of pre-emergent herbicide on unprotected bare seed. We conclude that HP seed treatments show some promise to improve seeding success in the presence of herbicide, but that consistent success will require further improvements to HP treatments as well as integration with other innovations and approaches.