Factors affecting intraspecific variation in home range size have rarely been examined using modern statistical and remote sensing methods. This is especially true for animals in seasonal savanna environments in Africa, despite this biome's importance for both conservation and development goals. We studied the impacts of spatial and temporal variability in environmental conditions, along with individual and social factors, on home range sizes in African buffalo (Syncerus caffer) in northeastern Namibia. Our data set spans 4 years, is derived from 32 satellite tracking collars, and contains over 35,000 GPS locations. We used the local convex hull method to estimate home range size from 31 buffalo captured at 6 sites. We used a variety of remotely sensed data to characterize potential anthropogenic and natural boundaries, as well as seasonal and temporal heterogeneity in environmental conditions. Using an information-theoretic, mixed effects approach, our analyses showed that home ranges varied over two orders of magnitude and are among the largest recorded for this species. Variables relating to vegetation and habitat boundaries were more important than abiotic environmental conditions and individual or social factors in explaining variation in home range size. The relative contributions of environmental, individual, social, and linear boundary variables to intraspecific home range size have rarely been examined and prior to this had not been assessed for any species in seasonal savannas of Africa. Understanding the factors that condition spaceuse patterns of wildlife in this area will lead to betterinformed conservation and sustainable development decisions.