Nerve conduction studies are usually the first diagnostic step in peripheral nerve disorders and their results are the basis for planning further investigations. However, there are some commonplaces in the interpretation of electrodiagnostic findings in peripheral neuropathies that, although useful in the everyday practice, may be misleading: (1) conduction block and abnormal temporal dispersion are distinctive features of acquired demyelinating disorders; (2) hereditary neuropathies are characterized by uniform slowing of conduction velocity; (3) axonal neuropathies are simply diagnosed by reduced amplitude of motor and sensory nerve action potentials with normal or slightly slow conduction velocity. In this review, we reappraise the occurrence of uniform and non‐uniform conduction velocity slowing, conduction block and temporal dispersion in demyelinating, dysmyelinating and axonal neuropathies attempting, with a translational approach, a correlation between electrophysiological and pathological features as derived from sensory nerve biopsy in patients and animal models. Additionally, we provide some hints to navigate in this complex field.