2010
DOI: 10.1016/j.aim.2009.09.005
|View full text |Cite
|
Sign up to set email alerts
|

Hermitian vector bundles and extension groups on arithmetic schemes. I. Geometry of numbers

Abstract: In a previous paper, we have defined arithmetic extension groups in the context of Arakelov geometry. In the present one, we introduce an arithmetic analogue of the Atiyah extension that defines an element -the arithmetic Atiyah class -in a suitable arithmetic extension group. Namely, if E is a hermitian vector bundle on an arithmetic scheme X, its arithmetic Atiyah class b at X/Z (E) lies in the group d Ext 2000 Mathematics Subject Classification. -MSC: Primary 14G40; Secondary 11J95, 14F05, 32L10.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
33
0
5

Year Published

2010
2010
2024
2024

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 27 publications
(39 citation statements)
references
References 55 publications
1
33
0
5
Order By: Relevance
“…[8] proposition 3.3.1), qui est une reformulation du premier théorème de Minkowski dans le cadre des fibrés vectoriels hermitiens. Si E = (E, ( · σ ) σ:K→C ) un fibré vecotiel hermitien sur Spec O K , on désigne par ε(E) le nombre réel Proposition 4.1.8.…”
Section: Théorème De Hilbertunclassified
“…[8] proposition 3.3.1), qui est une reformulation du premier théorème de Minkowski dans le cadre des fibrés vectoriels hermitiens. Si E = (E, ( · σ ) σ:K→C ) un fibré vecotiel hermitien sur Spec O K , on désigne par ε(E) le nombre réel Proposition 4.1.8.…”
Section: Théorème De Hilbertunclassified
“…4) Recently, Bost and Künnemann [BK07] have proved that, if K is a number field and if E and F are two non-zero Hermitian vector bundles on Spec O K , then…”
Section: Introductionmentioning
confidence: 99%
“…Results towards a positive answer to this question have been proved by André [1], Bost, de Shalit-Parzanovski, Chen [7] and Bost-Künneman [6]. The best available result is the following:…”
Section: Semi-stable Latticesmentioning
confidence: 65%
“…It owes its name to Poincaré's upper-half plane h = {z ∈ C : Im z > 0} which can be seen as the "upper-half" of P 1 (C) P 1 (R). 6 Actually this definition is too restrictive, as one has to let the filtration F • V to be defined only on a finite extension of Q p .…”
Section: The Role Of Semi-stable Vector Bundlesmentioning
confidence: 99%