We study the interplay between spontaneously breaking global continuous and discrete antilinear symmetries in a newly proposed general class of non-Hermitian quantum field theories containing a mixture of complex and real scalar fields. We analyse the model for different types of global symmetry preserving and breaking vacua. In addition, the models are symmetric under various types of discrete antilinear symmetries composed out of nonstandard simultaneous charge conjugations, time-reversals and parity transformations; CPT. While the global symmetry governs the existence of massless Goldstone bosons, the discrete one controls the precise expression of the Goldstone bosons in terms of the original fields in the model and its physical regimes. We show that even when the CPT-symmetries are broken on the level of the action expanded around different types of vacua, the mass spectra might still be real when the symmetry is preserved at the tree approximation and the breaking only occurs at higher order. We discuss the parameter space of some of the models in the proposed class and identify physical regimes in which massless Goldstone bosons emerge when the vacuum spontaneously breaks the global symmetry or equivalently when the corresponding Noether currents are conserved. The physical regions are bounded by exceptional points in different ways. There exist special points in parameter space for which massless bosons may occur already before breaking the global symmetry. However, when the global symmetry is broken at these points they can no longer be distinguished from genuine Goldstone bosons.