Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific components. Here we report that the Arabidopsis ethyl methanesulfonate-mutagenized brassinosteroidinsensitive 1 suppressor 7 (EBS7) gene encodes an ER membranelocalized ERAD component that is highly conserved in land plants. Loss-of-function ebs7 mutations prevent ERAD of brassinosteroid insensitive 1-9 (bri1-9) and bri1-5, two ER-retained mutant variants of the cell-surface receptor for brassinosteroids (BRs). As a result, the two mutant receptors accumulate in the ER and consequently leak to the plasma membrane, resulting in the restoration of BR sensitivity and phenotypic suppression of the bri1-9 and bri1-5 mutants. EBS7 accumulates under ER stress, and its mutations lead to hypersensitivity to ER and salt stresses. EBS7 interacts with the ER membrane-anchored ubiquitin ligase Arabidopsis thaliana HMGCoA reductase degradation 1a (AtHrd1a), one of the central components of the Arabidopsis ERAD machinery, and an ebs7 mutation destabilizes AtHrd1a to reduce polyubiquitination of bri1-9. Taken together, our results uncover a plant-specific component of a plant ERAD pathway and also suggest its likely biochemical function.is an integral part of an ER-mediated protein quality-control system in eukaryotes, which permits export of only correctly folded proteins but retains misfolded proteins in the ER for repair via additional folding attempts or removal through ERAD. Genetic and biochemical studies in yeast and mammalian cells have revealed that the core ERAD machinery is highly conserved between yeast and mammals and that ERAD involves four tightly coupled steps: substrate selection, retrotranslocation through the ER membrane, ubiquitination, and proteasome-mediated degradation (1, 2).Because the great majority of secretory/membrane proteins are glycosylated in the ER, diversion of most ERAD substrates from their futile folding cycles into ERAD is initiated through progressive mannose trimming of their asparagine-linked glycans (N-glycans) by ER/Golgi-localized class I mannosidases, including homologous to α-mannosidase 1 (Htm1) and its mammalian homologs ER degradation-enhancing α-mannosidase-like proteins (EDEMs) (3). The processed glycoproteins are captured by two ER resident proteins, yeast amplified in osteosarcoma 9 (OS9 in mammals) homolog (Yos9) and HMG-CoA reductase degradation 3 (Hrd3) [suppressor/enhancer of Lin-12-like (SEL1L) in mammals], which recognize the mannose-trimmed N-glycans and surface-exposed hydrophobic amino acid residues, respectively (4, 5). The selected ERAD clients are delivered to an ER membraneanchored ubiquitin ligase (E3), which is the core component of the ERAD machinery (6), for polyubiquitination. Yeast has two known ERAD E3 lig...