Potential causes of congenital infection include Toxoplasma gondii and viruses such as cytomegalovirus (CMV), enterovirus, hepatitis C virus, herpes simplex virus types 1 and 2 (HSV-1 and -2), human herpesvirus types 6, 7, and 8, lymphocytic choriomeningitis virus, parvovirus, rubella virus, and varicella-zoster virus. Testing for each of these agents using nucleic acid tests is time consuming and the availability of clinical samples such as amniotic fluid or neonatal blood is often limited. The aim of this study was to develop multiplex PCRs (mPCRs) for detection of DNA and RNA agents in the investigation of congenital infection and an mPCR for the viruses most commonly requested in a diagnostic virology laboratory (CMV, Epstein-Barr virus, enterovirus, HSV-1, HSV-2, and varicella-zoster virus). The assays were assessed using known pathogenpositive tissues (cultures, placentae, plasma, and amniotic fluid) and limits of detection were determined for all the agents studied using serial dilutions of plasmid targets. Nested PCR was performed as the most sensitive assay currently available, and detection of the amplicons using hybridization to labeled probes and enzyme-linked immunosorbent assay detection was incorporated into three of the four assays. This allowed detection of 10 to 10 2 copies of each agent in the samples processed. In several patients, an unexpected infection was diagnosed, including a case of encephalitis where HSV was the initial clinical suspicion but CMV was detected. In the majority of these cases the alternative agent could be confirmed using reference culture, serology, or fluorescence methods and was of relevance to clinical care of the patient. The methods described here provide useful techniques for diagnosing congenital infections and a paradigm for assessment of new multiplex PCRs for use in the diagnostic laboratory.Nucleic acid testing has allowed more sensitive and specific detection of infectious agents and is being increasingly adopted by diagnostic laboratories. The technology is particularly useful in virology as it can replace conventional culture methods that are often expensive and labor intensive, detect fastidious organisms such as hepatitis C virus (HCV), detect low-copynumber agents such as herpes simplex virus (HSV) in cerebrospinal fluid, and improve turn-around times for detection of treatable agents such as herpesviruses (30,42,48,50). In the clinical and diagnostic setting, accurate and rapid diagnosis of the causative agent of disease is paramount. Testing for various agents using multiple primer sets in multiplex PCR (mPCR) reactions is an innovation that offers significant benefits in costs, time and accurate diagnosis (20,35). Furthermore, for any given clinical syndrome there a number of candidate agents that may be implicated, particularly with regard to congenital infection.In the diagnostic setting, standardization of assays, use of quality controlled (usually commercially available) reagents, extensive validation of the assays used, and sensitive detection ...