Background:Several marketed antiviral vaccines (such as that against hepatitis virus A and/or B, influenza virus, human papillomavirus, yellow fever virus, measles, rubella and mumps viruses) may elicit various autoimmune reactions.Results:The cause of autoimmune response due to vaccination may be: 1. the adjuvant which is regularly added to the vaccine (especially in the case of various oil substrates), 2. the specific viral component itself (a protein or glycoprotein potentially possessing cross-reactive epitopes) and/or 3. contamination of the vaccine with traces of non-viral proteins mostly cellular in origin. Believing that peptide vaccines might represent an optimal solution for avoiding the above-mentioned problems, we discuss the principles of rational design of a typical peptide vaccine which should contain oligopeptides coming either from the selected structural virion components (i.e.capsid proteins and/or envelop glycoproteins or both) or from the virus-coded non-structural polypeptides. The latter should be equally immunogenic as the structural virus proteins. Describing the feasibility of identification and design of immunogenic epitopes, our paper also deals with possible problems of peptide vaccine manufacturing. The presented data are in part based on the experience of our own, in part, they are coming from the results published by others.Conclusion:Any peptide vaccine should be able to elicit relevant and specific antibody formation, as well as an efficient cell-mediated immune response. Consequently, the properly designed peptide vaccine is expected to consist of carefully selected viral peptides, which should stimulate the receptors of helper T/CD4 cells as well as of cytotoxic (T/CD8) lymphocytes.