The paper aims are to present a method to solve the multiple-attribute decision-making (MADM) problems under the hesitant fuzzy set environment. In MADM problems, the information collection, aggregation, and the measure phases are crucial to direct the problem. However, to handle the uncertainties in the collection data, a hesitant fuzzy number is one of the most prominent ways to express uncertain and vague information in terms of different discrete numbers rather than a single crisp number. Additionally, to aggregate and to rank the collective numbers, a TOPSIS (“Technique for Order of Preference by Similarity to Ideal Solution”) and the Choquet integral (CI) are the useful tools. Keeping all these features, in the present paper, we combine the TOPSIS and CI methods for hesitant fuzzy information and hence present a method named as TOPSIS-CI to address the MADM problems. The presented method has been described with a numerical example. Finally, the validity of the stated method as well as a comparative analysis with the existing methods is addressed in detail.