The heterobimetallic 15-MC-5 metallacrown of formula [CeCu5(5mpzHA)5(NO3)(H2O)7]·2NO3·7H2O, designated MC-Ce, was synthesized using 5-methyl-2-pyrazinehydroxamic acid (5mpzHA) as a linker, reacting with CeIII and CuII salts under mild conditions. Single-crystal X-ray diffraction analysis reveals a crown-like [Cu5Ce(5mpzHA)5] core, characteristic of a 15-MC-5 system, with five CuII atoms at the rim of the crown and the CeIII ion occupying the dome of the crown, with water molecules, oxygen atoms and one nitrate anion filling the nine-coordination sphere around the CeIII ion, which exhibits a distorted spherical tricapped trigonal prism geometry. The thermogravimetric analysis evidences successive mass losses due to the removal of water molecules and decomposition of the structure after 217 °C, whereas the PXRD analysis of the thermal decomposition residue reveals the presence of copper and copper/cerium oxide particles. These nanocomposite materials were also synthesized using the metallacrown MC-Ce under a hydrothermal method in the presence of multi-walled carbon nanotubes (MWCNTs), affording insights that this metallacrown can act as a source precursor for the synthesis of these mixed cerium/copper oxide nanomaterials. The experimental χMT value in MC-Ce at room temperature is 3.175 cm3 mol−1 K, which is higher than the calculated one for one magnetically isolated CeIII plus five CuII ions, probably due to the antiferromagnetic interactions among CuII ions within the metallacrown hoop plus the thermal depopulation of JZ sublevels of CeIII ground state (5/2), which exhibit a small splitting under the anisotropic ligand field effects. The χMT decreases continuously until it reaches the value of 0.80 cm3 mol−1 K at 10 K, reinforcing the presence of intramolecular antiferromagnetic interactions.