Photoelectrochemical (PEC) water splitting has attracted increasing attention due to its potential to mitigate energy and environmental issues. Hybrid PEC systems containing semiconductor photosensitizers and molecular catalysts are reported to be highly active and stable for water splitting with great potential for facilitating clean fuels production. In this review, following a showcasing of the fundamental details of hybrid PEC systems for water splitting, semiconductor/molecular catalyst interface designs are highlighted, with a focus on interfacial physicochemical interactions and binding, and interfacial energetics and dynamics for efficient charge transfer. Recent advances in hybrid system assemblies for PEC water splitting are also briefly introduced. Finally, future challenges and directions in the field of hybrid PEC water splitting for solar energy conversion are reviewed. The current review provides state‐of‐the‐art strategies for optimized interface design for creating highly active and stable PEC water splitting assemblies.