Magnetotelluric (MT) studies along a few traverses, some cutting across the Western Ghats, during the last few years have provided basic insights into the shallow as well as the deeper electrical structure in the regions near and east of the Western Ghat belt. The MT models broadly show a two layered lithospheric electrical structure with an upper high resistive layer (several thousands of Ωm) and a lower moderately conductive layer (a few tens to a few hundred Ωm). The depth of the interface between the two layers is found to vary from about 120-160 km in the south in the SGT to around 80 km in the north in the northern DVP. Another impressive feature that could be noticed in these electrical models is the presence of well-defined major near vertical crustal conductive feature associated with the region of Western Ghat belt, presumably associated with the tectonic evolution of the Western Ghats. Further, these models also brought out several other well-defined conductors that might be linked to structural features like faults, shear zones, etc., in the region. These conductors pierce through the crustal column and some of these, particularly those oriented in NW-SE direction, i.e., oriented transversely with respect to the ambient compressive stress direction of the Indian shield, assume significance in understanding the seismicity of the region.