A recently introduced technique, simultaneous multiple sample light scattering (SMSLS), was used to monitor parallel polymerization reactions in situ. SMSLS is designed for real-time, high-throughput screening and provides a time-dependent light scattering signature for each reaction, which contains both qualitative and semiquantitative information. Qualitatively, the signature immediately indicates whether the reaction occurs or not, whether there is an initial lag period, and how long the reaction takes until it stops. The signature also provides estimates of the reaction rate and weight average molecular mass M(w), and its shape can help identify mechanistic aspects, for example, controlled versus free radical polymerization, presence of impurities, etc. The method is inherently adapted to small sample volumes and requires no special sample preparation or postpolymerization characterization. The demonstration here involved the free radical polymerization of acrylamide under varying conditions and should be readily applicable to a wide variety of other reactions. Results were cross-checked with multi-detector gel permeation chromatography.