Nowadays, the proliferation of heterogeneous data sources provided by different research and innovation projects and initiatives is proliferating more and more and presents huge opportunities. These developments create an increase in the number of different data sources, which could be involved in the process of decisionmaking for a specific purpose, but this huge heterogeneity makes this task difficult. Traditionally, the expert systems try to integrate all information into a main database, but, sometimes, this information is not easily available, or its integration with other databases is very problematic. In this case, it is essential to establish procedures that make a metadata distributed integration for them. This process provides a "mapping" of available information, but it is only at logic level. Thus, on a physical level, the data is still distributed into several resources. In this sense, this chapter proposes a distributed rule engine extension (DREE) based on edge computing that makes an integration of metadata provided by different heterogeneous data sources, applying then a mathematical decomposition over the antecedent of rules. The use of the proposed rule engine increases the efficiency and the capability of rule-based expert systems, providing the possibility of applying these rules over distributed and heterogeneous data sources, increasing the size of data sets that could be involved in the decision-making process.