Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Heterogeneous domain adaptation (HDA) utilizes the knowledge of the source domain to model the target domain. Although the two domains are semantically related, the problem of feature and distribution differences in heterogeneous data still needs to be solved. Most of the existing HDA methods only consider the feature or distribution problem but do not consider the geometric semantic information similarity between the domain structures, which leads to a weakened adaptive performance. In order to solve the problem, a centroid connected structure matching network (CCSMN) approach is proposed, which firstly maps the heterogeneous data into a shared public feature subspace to solve the problem of feature differences. Secondly, it promotes the overlap of domain centers and nodes of the same category between domains to reduce the positional distribution differences in the internal structure of data. Then, the supervised information is utilized to generate target domain nodes, and the geometric structural and semantic information are utilized to construct a centroid-connected structure with a reasonable inter-class distance. During the training process, a progressive and integrated pseudo-labeling is utilized to select samples with high-confidence labels and improve the classification accuracy for the target domain. Extensive experiments are conducted in text-to-image and image-to-image HDA tasks, and the results show that the CCSMN outperforms several state-of-the-art baseline methods. Compared with state-of-the-art HDA methods, in the text-to-image transfer task, the efficiency has increased by 8.05%; and in the image-to-image transfer task, the efficiency has increased by about 2%, which suggests that the CCSMN benefits more from domain geometric semantic information similarity.
Heterogeneous domain adaptation (HDA) utilizes the knowledge of the source domain to model the target domain. Although the two domains are semantically related, the problem of feature and distribution differences in heterogeneous data still needs to be solved. Most of the existing HDA methods only consider the feature or distribution problem but do not consider the geometric semantic information similarity between the domain structures, which leads to a weakened adaptive performance. In order to solve the problem, a centroid connected structure matching network (CCSMN) approach is proposed, which firstly maps the heterogeneous data into a shared public feature subspace to solve the problem of feature differences. Secondly, it promotes the overlap of domain centers and nodes of the same category between domains to reduce the positional distribution differences in the internal structure of data. Then, the supervised information is utilized to generate target domain nodes, and the geometric structural and semantic information are utilized to construct a centroid-connected structure with a reasonable inter-class distance. During the training process, a progressive and integrated pseudo-labeling is utilized to select samples with high-confidence labels and improve the classification accuracy for the target domain. Extensive experiments are conducted in text-to-image and image-to-image HDA tasks, and the results show that the CCSMN outperforms several state-of-the-art baseline methods. Compared with state-of-the-art HDA methods, in the text-to-image transfer task, the efficiency has increased by 8.05%; and in the image-to-image transfer task, the efficiency has increased by about 2%, which suggests that the CCSMN benefits more from domain geometric semantic information similarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.