2021
DOI: 10.1016/j.cagd.2021.101970
|View full text |Cite
|
Sign up to set email alerts
|

Heterogeneous parametric trivariate fillets

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
6
1

Relationship

2
5

Authors

Journals

citations
Cited by 7 publications
(6 citation statements)
references
References 29 publications
0
6
0
Order By: Relevance
“…Among the applications discussed, the enforcement of the weak continuity is probably the more interesting from a geometric modeling point of view. In a recent work [28], Masalha and colleagues proposed a procedure for creating heterogeneous parametric trivariate fillets. Despite the interesting geometric algorithms proposed, the obtained fillets are not connected to the original objects and therefore new fillets need to be created every time a deformation applies to the input objects.…”
Section: Discussionmentioning
confidence: 99%
“…Among the applications discussed, the enforcement of the weak continuity is probably the more interesting from a geometric modeling point of view. In a recent work [28], Masalha and colleagues proposed a procedure for creating heterogeneous parametric trivariate fillets. Despite the interesting geometric algorithms proposed, the obtained fillets are not connected to the original objects and therefore new fillets need to be created every time a deformation applies to the input objects.…”
Section: Discussionmentioning
confidence: 99%
“…Fan et al [11] designed a honeycomb lattice structure and a sandwich structure with better mechanical properties than the solid structure, but the model is only two-dimensional. Masalha et al [12] studied several algorithms to construct heterogeneous or trivariate fillets that support smooth filleting operation. The results verify the feasibility of the algorithms.…”
Section: Related Workmentioning
confidence: 99%
“…Following Masalha et al (2021), given two adjacent freeform surfaces in IR 3 , the half Boolean sum operator constructs a trivariate in which two of its boundaries interpolate the two input surfaces. Herein, we also consider a variant of this operator for a surface from two adjacent curves in IR 2 or IR 3 , in Section 3.1, and a trivariate from two/three adjacent surfaces in IR 3 , in Section 3.2.…”
Section: Half Boolean Summentioning
confidence: 99%
“…As part of this work, we consider three geometric constructors: ruling, Boolean sum, and half Boolean sum, a simpler variation of the Boolean sum that was introduced in Masalha et al (2021). We will first consider the case of planar input curves that construct a planar surface, and then, the spatial case where the input curves and/or surfaces in IR 3 synthesize a trivariate.…”
Section: Introductionmentioning
confidence: 99%