Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Crop lodging is recognised as one of the yield‐limiting factors in agricultural production. Therefore, better understanding to improve lodging resistance and to prevent lodging‐induced losses in agronomic crops is necessary. Besides yield losses, lodging severely affects the crop harvesting process and increases the production cost. However, achieving the objective of higher crop yields and yield quality without increasing lodging risk is quite challenging. To this end, it is essential to interpret the underlying mechanism of plant stem buckling and failure of root anchorage and optimise the fundamental trade‐off between lodging resistance and yield performance in agronomic crops. In the present review, we made an effort to discuss recent and innovative research insights that guarantee greater lodging resistance along with advanced lodging prevention strategies while sustaining higher crop yield and yield quality.
Crop lodging is recognised as one of the yield‐limiting factors in agricultural production. Therefore, better understanding to improve lodging resistance and to prevent lodging‐induced losses in agronomic crops is necessary. Besides yield losses, lodging severely affects the crop harvesting process and increases the production cost. However, achieving the objective of higher crop yields and yield quality without increasing lodging risk is quite challenging. To this end, it is essential to interpret the underlying mechanism of plant stem buckling and failure of root anchorage and optimise the fundamental trade‐off between lodging resistance and yield performance in agronomic crops. In the present review, we made an effort to discuss recent and innovative research insights that guarantee greater lodging resistance along with advanced lodging prevention strategies while sustaining higher crop yield and yield quality.
Increasing wheat (Triticum aestivum L.) planting density is the most effective production management method for increasing yields; however, excessive crop populations under high planting densities may experience elevated risk of stem lodging. We conducted this study to assess the relationship between reduced lodging and increased yield, investigate the effects of planting density on wheat population structure, stem strength, and material transport, and provide a basis for rationale planting densities. The experiments were carried out using a split-plot design with three replicates. The main plots contained two wheat varieties: Bainong 5819 (BN5819) and Bainong 4199 (BN4199), and the sub-plots contained four planting density treatments: 90 × 104 plants/ha (D1), 180 × 104 plants/ha (D2), 270 × 104 plants/ha (D3), and 360 × 104 plants/ha (D4). A two-year field trial was conducted in 2021–2023. The relationships between population structure characteristics, changes in stem strength, activation, and retransport of stem material after anthesis, and achievement of high and stable yields were investigated at the different planting densities. When the planting density of wheat increased from D1 to D4 treatment, the activity of fructan hydrolase was significantly increased. Compared with D1 treatment, the highest activity of fructan hydrolase was increased by 457.47 μg/h/g under D4 treatment. At the same time, the increase of density also increased the contribution rate of dry matter accumulation (CDMA) to grain after anthesis increased, with the highest increase in CDMA at 33.67%, which significantly reduced stem strength. Correlation analysis revealed a significant negative association between CDMA and stem strength. Specifically, CDMA levels were significantly lower with the D3 treatment than the D4 treatment, while stem strength remained higher after anthesis as an adaptive response to mitigate lodging risk. Stem storage compounds can promote grain filling and a weight increase in inferior grains. The number of spikes per unit area increased significantly with increasing planting density, but the number of grains per spike and 1000-grain weight decreased significantly. In two years, the number of spikes in D3 treatment increased by a maximum of 211.67 × 104 ha−1 and 99.17 × 104 ha−1, respectively, compared to D1 and D2 treatments. The number of grains per spike was significantly higher than that of D4 treatment, the highest being 3.68 grains. Therefore, in the North China Plain with suitable water, fertilizer, and temperature, the sowing density of 270 × 104 plants/ha established population structure, significantly reduced CDMA, maintained post-anthesis stem strength, enhanced resilience of stems against post-anthesis lodging, and resulted in high yields by stabilizing the number of grains per spike and increasing the number of wheat spikes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.