Artificial noise, energy harvesting, and overlay communications can assure design metrics of modern wireless networks such as data security, energy efficiency, and spectrum utilization efficiency. This paper studies impact of artificial noise on security capability of energy harvesting overlay networks in which the cognitive transmitter capable of self-powering its operation by harvesting radio frequency energy and self-securing its communications against eavesdroppers by generating artificial noise amplifies and forwards the signal of the primary transmitter as well as transmits its individual signal concurrently. To quantify this impact, the current paper firstly suggests accurate expressions of crucial security performance indicators. Then, computer simulations are supplied to corroborate these expressions. Finally, numerous results are demonstrated to expose insights into this impact from which optimum specifications are determined. Notably, primary/cognitive communications can be secured at distinct degrees by flexibly controlling multiple specifications of the suggested system model.