High dietary SBM content is known to induce important physiological alterations, hampering its use as a major FM alternative. Rainbow trout (Oncorhynchus mykiss) juveniles were fed two experimental diets during 9 weeks: (i) a FM diet containing 12% FM; and (ii) a vegetable meal (VM) diet totally devoid of FM and based on SBM (26%). Fish fed the VM diet did not show reduced growth performance when compared with fish fed the FM diet. Nevertheless, fish fed the VM diet had an increased viscerosomatic index, lower apparent fat digestibility, higher aminopeptidase enzyme activity and number of villi fusions, and lower α-amylase enzyme activity and brush border integrity. Small RNA-Seq analysis identified six miRs (omy-miR-730a-5p, omy-miR-135c-5p, omy-miR-93a-3p, omy-miR-152-5p, omy-miR-133a-5p, and omy-miR-196a-3p) with higher expression in blood plasma from fish fed the VM diet. Bioinformatic prediction of target mRNAs identified several overrepresented biological processes known to be associated with high dietary SBM content (e.g., lipid metabolism, epithelial integrity disruption, and bile acid status). The present research work increases our understanding of how SBM dietary content has a physiological impact in farmed fish and suggests circulating miRs might be suitable, integrative, and less invasive biomarkers in fish.