This review is focused on the strategies and designs of magnetic nanostructured catalysts showing the enhanced and sustainable catalytic performances for the heterogeneous reduction of nitoaromatics. Magnetic catalysts have the benefits of easy recovery and reuse after the completion of the reactions and green chemical processes. Magnetic separation, among the various procedures for removing catalysts, not only obviates the requirement of catalyst filtration or centrifugation after the completion of reactions, but also provides a practical technique for recycling the magnetized nanostructured catalysts. Consequently, discussions will address the methodologies and exemplars for the reusable magnetic composite catalysts. Because the synthesis of ideal magnetic nanostructured catalysts is of primary importance in the development of high-quality sustainable processes, the designs, preparation methods and recyclability of various recoverable magnetic nanostructured catalysts are emphasized. The representative methods and strategies for the synthesis of durable and reusable magnetic nanostructured catalysts are highlighted. The advantages, disadvantages, recyclability and the efficiency of the introduced heterogeneous systems have been explored in the reduction of nitrobenzene derivatives.