We
report on the synthesis and self-assembly of 2,15- and 4,13-disubstituted
carbo[6]helicenes 1 and 2 bearing 3,4,5-tridodecyloxybenzamide
groups. The self-assembly of these [6]helicenes is strongly influenced
by the substitution pattern in the helicene core that affects the
mutual orientation of the monomeric units in the aggregated form.
Thus, the 2,15-substituted derivative 1 undergoes an
isodesmic supramolecular polymerization forming globular nanoparticles
that maintain circularly polarized light (CPL) with g
lum values as high as 2 × 10–2.
Unlike carbo[6]helicene 1, the 4,13-substituted derivative 2 follows a cooperative mechanism generating helical one-dimensional
fibers. As a result of this helical organization, [6]helicene 2 exhibits a unique modification in its ECD spectral pattern
showing sign inversion at low energy, accompanied by a sign change
of the CPL with g
lum values of 1.2 ×
10–3, thus unveiling an example of CPL inversion
upon supramolecular polymerization. These helical supramolecular structures
with high chiroptical activity, when deposited on conductive surfaces,
revealed highly efficient electron-spin filtering abilities, with
electron spin polarizations up to 80% for 1 and 60% for 2, as measured by magnetic conducting atomic force microscopy.