Recently, a new protein containing a disintegrin domain, alternagin-C (Alt-C), was purified from Bothrops alternatus venom. Unlike other disintegrins, in Alt-C an ECD amino acid motif takes the place of the RGD sequence. Most disintegrins contain an RGD/KGD sequence and are very potent inhibitors of platelet aggregation, as well as other cell interactions with the extracellular matrix, including tumor cell metastasis and angiogenesis. The present study investigated the effects of Alt-C on human neutrophil chemotaxis in vitro and the activation of integrin-mediated pathways. Alt-C showed a potent chemotactic effect for human neutrophils when compared to N-formyl-methionyl-leucylphenylalanine peptide (fMLP), a classic chemotactic agent. Moreover, preincubation of neutrophils with Alt-C significantly inhibited chemotaxis toward fMLP and itself. In addition, a peptide containing an ECD sequence presented a chemotactic activity and significantly inhibited chemotaxis induced by Alt-C and fMLP. A significant increase of F-actin content was observed in cells treated with Alt-C, showing that the chemotactic activity of Alt-C on neutrophils is driven by actin cytoskeleton dynamic changes. Futhermore, this protein was able to induce an increase of phosphotyrosine content triggering focal adhesion kinase activation and its association with phosphatidylinositol 3-kinase. Alt-C was also able to induce a significant increase in extracellular signal-regulated kinase 2 1 nuclear translocation. The chemotactic activity of Alt-C was partially inhibited by LY294002, a specific phosphatidylinositol 3-kinase inhibitor, and by PD98056, a Map kinase kinase 2 inhibitor. These findings suggest that Alt-C can trigger human neutrophil chemotaxis modulated by intracellular signals characteristic of integrin-activated pathways and that these effects could be related to the ECD motif present in disintegrin-like domain.Keywords: neutrophil; chemotaxis; integrin signaling.The recruitment of polymorphonuclear neutrophils to sites of inflammation and tissue injury requires rolling on the vessel walls and subsequent migration through the vascular endothelium. Migration involves multiple neutrophil adhesion receptors, such as L-selectin for rolling and integrins for adherence and locomotion [1,2]. These adhesion receptors have counter-receptors on endothelial cells and also specific ligands that are extracellular matrix (ECM) proteins [3].Integrins are comprised of noncovalently linked a and b chains that can associate in various combinations and thus determine the ligand-binding specificities of the intact heterodimer [4,5]. On the other hand, binding of integrins to the ECM is mediated by an integrin-recognition RGD motif found on some ECM components such as fibronectin, vitronectin and fibrinogen [6]. Integrin-ligand binding and receptor clustering initiate a signaling cascade that involves receptor activation, increase in tyrosine kinase activity and protein phosphorylation, and reorganization of the actin cytoskeleton [5,7]. Focal adhesion kin...