Background
Safe and effective vaccines are crucial for the control and eventual elimination of malaria. Novel approaches to optimize and improve vaccine efficacy are urgently required. Nanoparticle-based delivery platforms are considered potent and powerful tools for vaccine development.
Methods
In this study, we developed a transmission-blocking vaccine against malaria by conjugating the ookinete surface antigen PSOP25 to the Acinetobacter phage coat protein AP205, forming virus-like particles (VLPs) using the SpyTag/SpyCatcher adaptor system. The combination of AP205-2*SpyTag with PSOP25-SpyCatcher resulted in the formation of AP205-PSOP25 complexes (VLP-PSOP25). The antibody titers and avidity of serum from each immunization group were assessed by ELISA. Western blot and IFA were performed to confirm the specific reactivity of the elicit antisera to the native PSOP25 in Plasmodium berghei ookinetes. Both in vitro and in vivo assays were conducted to evaluate the transmission-blocking activity of VLP-PSOP25 vaccine.
Results
Immunization of mice with VLP-PSOP25 could induced higher levels of high-affinity antibodies than the recombinant PSOP25 (rPSOP25) alone or mixtures of untagged AP205 and rPSOP25 but was comparable to rPSOP25 formulated with alum. Additionally, the VLP-PSOP25 vaccine enhanced Th1-type immune response with remarkably increased levels of IgG2a subclass. The antiserum generated by VLP-PSOP25 specifically recognizes the native PSOP25 antigen in P. berghei ookinetes. Importantly, antisera generated by inoculation with the VLP-PSOP25 could inhibit ookinete development in vitro and reduce the prevalence of infected mosquitoes or oocyst intensity in direct mosquito feeding assays.
Conclusions
Antisera elicited by immunization with the VLP-PSOP25 vaccine confer moderate transmission-reducing activity and transmission-blocking activity. Our results support the utilization of the AP205-SpyTag/SpyCatcher platform for next-generation TBVs development.
Graphical abstract