The class-A macrophage scavenger receptor (MSR) is a trimeric multifunctional protein expressed selectively in differentiated monomyeloid phagocytes which mediates uptake of chemically modified lipoproteins and bacterial products. This study investigated whether MSR plays a role in the regulation of apoptosis, a model of genetically programmed cell death. De novo expression of MSR occurred in human THP-1 monocytic cells differentiated with phorbol esters, which activated a nuclear transcription factor binding to the Ap1/ets-like domain of the MSR promoter. The phorbol ester-stimulated THP-1 cells also expressed increased levels of the pro-apoptotic gene products, caspase-3 and Fas ligand, but the cells exhibited no change in apoptosis. Global activation of GTP-binding proteins with fluoride anions triggered apoptosis of THP-1 cells in a time-and concentration-dependent manner, demonstrated by nuclear shrinkage and fragmentation and internucleosomal DNA fragmentation. However, the MSR-expressing THP-1 macrophage-like cells showed a significant reduction in apoptosis compared to undifferentiated control THP-1 cells, which produce MSR at undetectable levels. Fluoride stimulation also triggered apoptosis of human Jurkat T cells. Stimulation with phorbol ester made no difference in apoptosis between treated and untreated Jurkat cells. Finally, Chinese hamster ovary (CHO) cells overexpressing the class-A MSR type I by cDNA transfection showed markedly increased resistance to Gprotein-coupled apoptosis. Thus, de novo expression of MSR associated with monocyte maturation into macrophages appears to confer the resistance of macrophages to apoptotic stimulation by G-protein activation.