2010
DOI: 10.1007/s10614-010-9243-x
|View full text |Cite
|
Sign up to set email alerts
|

Heuristic Optimization Methods for Dynamic Panel Data Model Selection: Application on the Russian Innovative Performance

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2013
2013
2022
2022

Publication Types

Select...
6
1
1

Relationship

1
7

Authors

Journals

citations
Cited by 12 publications
(3 citation statements)
references
References 36 publications
0
2
0
1
Order By: Relevance
“…Thus, we found that the role of competitive market selection for labor productivity growth has increased somewhat in Russia in recent years, but predominantly this reallocation occurs not in (but rather from) manufacturing but in construction, transport, and trade. This suggests that we should consider how to stop the outflow of labor from manufacturing by creating innovative directions in production and encouraging domestic enterprises to expand their market share both in the domestic market and by exporting their goods abroad (Savin and Winker, 2009;Savin and Winker, 2012).…”
Section: Resultsmentioning
confidence: 99%
“…Thus, we found that the role of competitive market selection for labor productivity growth has increased somewhat in Russia in recent years, but predominantly this reallocation occurs not in (but rather from) manufacturing but in construction, transport, and trade. This suggests that we should consider how to stop the outflow of labor from manufacturing by creating innovative directions in production and encouraging domestic enterprises to expand their market share both in the domestic market and by exporting their goods abroad (Savin and Winker, 2009;Savin and Winker, 2012).…”
Section: Resultsmentioning
confidence: 99%
“…Since the explanatory factors in the model might have a lagged effect on the outcome variables, and since a static model would not adequately capture such effects, a re-specified model with a set of lagged independent variables was tested (Sachs and Schleer 2013). Within this vein, the model was estimated by adjusting the lag length from 0 to four years, using the Bayesian Information Criterion (BIC) and heuristic judgment, which has been shown to provide reliable parameter estimates (Kapetanios 2007;Savin and Winker 2012). Overall, the results from the BIC test indicate that changing the lag length from two to three years does not substantially alter the findings.…”
Section: Methodsmentioning
confidence: 99%
“…Некоторые исследователи при анализе инноваций применяют методы сокращения числа факторов: многомерный статистический анализ, сжимающий пространство данных [15], или нейросетевые алгоритмы, отбирающие наилучший набор факторов [16]. Но, как нам кажется, экономическая интерпретация результатов важнее продвинутости инструментария, который иногда может давать странные результаты в условиях неболь- Фиксированные эффекты допускают уникальные ненаблюдаемые ошибки для каждого региона.…”
Section: методологическая основа исследованияunclassified