In this paper, we consider the problem of estimating the internal displacement field of an object which is being subjected to a deformation, from optical coherence tomography images before and after compression. For the estimation of the internal displacement field we propose a novel algorithm, which utilizes particular speckle information to enhance the quality of the motion estimation. We present numerical results based on both simulated and experimental data in order to demonstrate the usefulness of our approach, in particular when applied for quantitative elastography, when the material parameters are estimated in a second step based on the internal displacement field.