Mono-and dipotassium salts of dipropylene glycol were applied for the polymerization of propylene oxide in mild conditions, i.e., tetrahydrofuran solution at ambient temperature. The structure of polymers was investigated by use of 13 C NMR and MALDI-TOF techniques. The structure depends strongly on the kind of initiator and additives that are used such as coronand 18-crown-6 and dipropylene glycol. The lowest unsaturation, represented by allyloxy starting groups, has the polymer obtained by use of monopotassium salt without the ligand. The highest unsaturation degree is for the polymer synthesized in the presence of dipotassium salt-activated 18-crown-6. This polymer, obtained at high initial monomer concentration and low initial concentration of initiator, consists of two fractions, i.e., a low molar mass fraction (M n ¼ 9400) containing mainly macromolecules with alkoxide starting and end groups and a much higher molar mass fraction (M n ¼ 29500 g/mol) containing macromolecules with allyloxy starting groups and alkoxide or hydroxyl end groups. Addition of free glycol to this system decreases the molar mass of polymers. Similar results were obtained by use of dipotassium salts of other glycols. The mechanisms of the studied processes are discussed.