Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: Uveal melanoma (UM), a rare cancer of the eye, is characterized by initiating mutations in the genes G-protein subunit alpha Q (GNAQ), G-protein subunit alpha 11 (GNA11), cysteinyl leukotriene receptor 2 (CYSLTR2), and phospholipase C beta 4 (PLCB4) and by metastasis-promoting mutations in the genes splicing factor 3B1 (SF3B1), serine and arginine rich splicing factor 2 (SRSF2), and BRCA1-associated protein 1 (BAP1). Here, we tested the hypothesis that additional mutations, though occurring in only a few cases (“secondary drivers”), might influence tumor development. Methods: We analyzed all the 4125 mutations detected in exome sequencing datasets, comprising a total of 139 Ums, and tested the enrichment of secondary drivers in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that also contained the initiating mutations. We searched for additional mutations in the putative secondary driver gene protein tyrosine kinase 2 beta (PTK2B) and we developed new mutational signatures that explain the mutational pattern observed in UM. Results: Secondary drivers were significantly enriched in KEGG pathways that also contained GNAQ and GNA11, such as the calcium-signaling pathway. Many of the secondary drivers were known cancer driver genes and were strongly associated with metastasis and survival. We identified additional mutations in PTK2B. Sparse dictionary learning allowed for the identification of mutational signatures specific for UM. Conclusions: A considerable part of rare mutations that occur in addition to known driver mutations are likely to affect tumor development and progression.
Background: Uveal melanoma (UM), a rare cancer of the eye, is characterized by initiating mutations in the genes G-protein subunit alpha Q (GNAQ), G-protein subunit alpha 11 (GNA11), cysteinyl leukotriene receptor 2 (CYSLTR2), and phospholipase C beta 4 (PLCB4) and by metastasis-promoting mutations in the genes splicing factor 3B1 (SF3B1), serine and arginine rich splicing factor 2 (SRSF2), and BRCA1-associated protein 1 (BAP1). Here, we tested the hypothesis that additional mutations, though occurring in only a few cases (“secondary drivers”), might influence tumor development. Methods: We analyzed all the 4125 mutations detected in exome sequencing datasets, comprising a total of 139 Ums, and tested the enrichment of secondary drivers in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that also contained the initiating mutations. We searched for additional mutations in the putative secondary driver gene protein tyrosine kinase 2 beta (PTK2B) and we developed new mutational signatures that explain the mutational pattern observed in UM. Results: Secondary drivers were significantly enriched in KEGG pathways that also contained GNAQ and GNA11, such as the calcium-signaling pathway. Many of the secondary drivers were known cancer driver genes and were strongly associated with metastasis and survival. We identified additional mutations in PTK2B. Sparse dictionary learning allowed for the identification of mutational signatures specific for UM. Conclusions: A considerable part of rare mutations that occur in addition to known driver mutations are likely to affect tumor development and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.