2010
DOI: 10.2343/geochemj.1.0043
|View full text |Cite
|
Sign up to set email alerts
|

Hf contents and Zr/Hf ratios in granitic zircons

Abstract: We present a statistical analysis of 2201 electron microprobe determinations of Hf contents and Zr/Hf ratios in zircon from 65 samples of granitic rocks. The modal Hf content and modal Zr/Hf ratio of zircon taken from the data are 1.43 wt% HfO 2 and 38.5 respectively. Estimated partition coefficients are 2520 for D Zr and 2420 for D Hf between zircon and granitic magma. The large and similar Zr and Hf partition coefficients indicate that the crystallization of zircon would deplete the melt in both Zr and Hf, b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

3
56
0
8

Year Published

2013
2013
2021
2021

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 146 publications
(67 citation statements)
references
References 39 publications
3
56
0
8
Order By: Relevance
“…This finding is supported by Ti-in-zircon temperatures, which are too high for hydrothermal zircon, or for zircon associated with carbonatite magma. Chilwa Island zircons do not possess the spongy textures and high HfO 2 content associated with hydrothermal zircon (Corfu et al, 2003;Hoskin, 2005, Wang et al, 2010. Zircon morphology in low-and medium-grade fenite is predominantly euhedral with well-defined terminations This size (mostly between 40 and 100 µm) and the shape of Chilwa Island zircons contrast with the large size of carbonatitic zircons, which are generally >250 µm in length (Campbell et al, 2014, and references therein), and the characteristic Fennoscandian carbonatitic zircon di-pyramidal form (Tichomirowa et al, 2013), or pyramid-dominant morphology of zircon associated with an origin from alkaline-carbonatite melt (Campbell et al, 2014)..…”
Section: Non-carbonatitic Zircons Origin Of Chilwa Island Zirconmentioning
confidence: 99%
“…This finding is supported by Ti-in-zircon temperatures, which are too high for hydrothermal zircon, or for zircon associated with carbonatite magma. Chilwa Island zircons do not possess the spongy textures and high HfO 2 content associated with hydrothermal zircon (Corfu et al, 2003;Hoskin, 2005, Wang et al, 2010. Zircon morphology in low-and medium-grade fenite is predominantly euhedral with well-defined terminations This size (mostly between 40 and 100 µm) and the shape of Chilwa Island zircons contrast with the large size of carbonatitic zircons, which are generally >250 µm in length (Campbell et al, 2014, and references therein), and the characteristic Fennoscandian carbonatitic zircon di-pyramidal form (Tichomirowa et al, 2013), or pyramid-dominant morphology of zircon associated with an origin from alkaline-carbonatite melt (Campbell et al, 2014)..…”
Section: Non-carbonatitic Zircons Origin Of Chilwa Island Zirconmentioning
confidence: 99%
“…As imagens de CL indicam que a mineralização estanífera desse granito está presente nas suas rochas mais evoluí-das e alteradas hidrotermalmente e em corpos de greisens associados, onde foram identificados finos cristais de cassiterita associados ou inclusos em cristais de Qz4 e Qz5, considerados de origem hidrotermal. O comportamento do Hf e as razões Zr/Hf em zircões graníticos podem ser utilizadas como traçadores geoquímicos no estudo da origem e ambiente de cristalização de seu magma hospedeiro (Belousova et al, 2002;Wang, Griffin, Chen, 2010), além de atuar como ferramenta prospectiva preliminar para granitos especializados (Lamarão et al, 2007(Lamarão et al, , 2010(Lamarão et al, , 2012. No GAV, os zircões com os mais elevados conteúdos de Hf e as mais baixas razões Zr/Hf pertencem às rochas mais evoluídas e alteradas hidrotermalmente e aos corpos de greisens, ambos portadores de mineralizações de Sn, indicando que essas características podem ser utilizadas na avaliação preliminar do potencial metalogenético de granitos estaníferos.…”
Section: Conclusõesunclassified
“…Tais zoneamentos comumente refletem variações nos conteúdos de Zr e Si, além de Hf, Y, Th, U, P e elementos terras raras (ETR) encontrados na sua estrutura (Heaman, Bowins, Crocket, 1990;Kempe et al, 1997Kempe et al, , 2004Uher et al, 1998;Hoskin e Ireland, 2000;Pupin, 2000;Wang et al, 2000;Belousova et al, 2002). A utilização de imagens de CL acompanhadas de análises químicas pontuais por EDS (Energy Dispersive Spectrometry), microssonda eletrônica ou LA-ICP-MS (Laser-ablation inductively coupled plasma mass spectrometry) têm sido empregadas para identificar variações composicionais em zircão magmático (Hanchar e Miller, 1993;Hanchar e Hudnick, 1995;Fowler et al, 2002), núcleos herdados, zoneamentos composicionais, bordas de sobrecrescimento (Paterson et al, 1992;Vavra et al, 1996;Wang, Griffin, Chen, 2010) e inclusões. Além disso, granitos especializados possuem zircões com enriquecimento significativo em Hf e baixas razões Zr/Hf, indicando que a composição desse mineral pode ser utilizada preliminarmente na prospecção de granitos mineralizados em Sn e metais associados Kempe et al, 2004;Lamarão et al, 2007Lamarão et al, , 2010, 2012 e artigo em preparação).…”
Section: Introductionunclassified
“…Hence Zr/Hf ratios of the Logrosán zircon fit well with crustal signatures. It is expected that the Zr/Hf ratio in a single magma series should be approximately constant (Wang et al, 2010). Therefore, the wide range of Zr/Hf values for such a small granitic body may indicate not only a different degree of differentiation but also a participation of several magma inputs.…”
mentioning
confidence: 99%