Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose:The main cause of geomagnetic disturbances are cosmic sources, processes acting in the solar wind and in the interplanetary medium, as well as large celestial bodies entering the terrestrial atmosphere. Earthquakes (EQs) also act to produce geomagnetic effects. In accordance with the systems paradigm, the Earth–atmosphere–ionosphere–magnetosphere system (EAIMS) constitute a unified system, where positive and negative couplings among the subsystems, as well as feedbacks and precondition among the system components take place. The mechanisms for the action of EQs and processes acting in the lithosphere on the geomagnetic field are poorly understood. It is considered that the EQ action is caused by cracking of rocks, fluctuating motion in the pore fluid, static electricity discharges, etc. In the course of EQs, the seismic, acoustic, atmospheric gravity waves (AGWs), and magnetohydrodynamic (MHD) waves are generated. The purpose of this paper is to describe the magnetic effects of the EQ, which took place in Turkey on 24 January 2020. Design/methodology/approach: The measurements are taken with the fluxmeter magnetometer delivering 0.5-500 pT sensitivity in the 1-1000 s period range, respectively, and in a wide enough studied frequency band within 0.001 to 1 Hz. The EM-II magnetometer with the embedded microcontroller digitizes the magnetometer signals and performs preliminary filtering over 0.5 s time intervals, while the external flash memory is used to store the filtered out magnetometer signals and the times of their acquisition. To investigate quasi-periodic processes in detail, the temporal variations in the level of the H and D components of the geomagnetic field were applied to the systems spectral analysis, which makes use of the short-time Fourier transform, the wavelet transform using the Morlet wavelet as a basis function, and the Fourier transform in a sliding window with a width adjusted to be equal to a fixed number of harmonic periods. Findings: The train of oscillations in the level of the D component observed 25.5 h before the EQ on 23 January 2020 is supposed to be associated with the magnetic precursor. The bidirectional pulse in the H component observed on 24 January 2020 could be due to the piston action of the EQ, which had generated an MHD pulse. The quasi-periodic variations in the level of the H and D components of the geomagnetic field, which followed 75 min after the EQ, were caused by a magnetic disturbance produced by the traveling ionospheric disturbances due to the AGWs launched by the EQ. The magnetic effect amplitude was estimated to be close to 0.3 nT, and the quasi-period to be 700-900 s. The amplitude of the disturbances in the electron density in the AGW field was estimated to be about 8 % and the period of 700-900 s. Damping oscillations in both components of the magnetic field were detected to occur with a period of approximately 120 s. This effect is supposed to be due to the shock wave generated in the atmosphere in the course of the EQ. Conclusions: The magnetic variations associated with the EQ and occurring before and during the EQ have been studied in the 1-1000 s period range. Key words: earthquake, fluxmeter magnetometer, quasi-periodic disturbance, seismic wave, acoustic-gravity wave, MHD pulse
Purpose:The main cause of geomagnetic disturbances are cosmic sources, processes acting in the solar wind and in the interplanetary medium, as well as large celestial bodies entering the terrestrial atmosphere. Earthquakes (EQs) also act to produce geomagnetic effects. In accordance with the systems paradigm, the Earth–atmosphere–ionosphere–magnetosphere system (EAIMS) constitute a unified system, where positive and negative couplings among the subsystems, as well as feedbacks and precondition among the system components take place. The mechanisms for the action of EQs and processes acting in the lithosphere on the geomagnetic field are poorly understood. It is considered that the EQ action is caused by cracking of rocks, fluctuating motion in the pore fluid, static electricity discharges, etc. In the course of EQs, the seismic, acoustic, atmospheric gravity waves (AGWs), and magnetohydrodynamic (MHD) waves are generated. The purpose of this paper is to describe the magnetic effects of the EQ, which took place in Turkey on 24 January 2020. Design/methodology/approach: The measurements are taken with the fluxmeter magnetometer delivering 0.5-500 pT sensitivity in the 1-1000 s period range, respectively, and in a wide enough studied frequency band within 0.001 to 1 Hz. The EM-II magnetometer with the embedded microcontroller digitizes the magnetometer signals and performs preliminary filtering over 0.5 s time intervals, while the external flash memory is used to store the filtered out magnetometer signals and the times of their acquisition. To investigate quasi-periodic processes in detail, the temporal variations in the level of the H and D components of the geomagnetic field were applied to the systems spectral analysis, which makes use of the short-time Fourier transform, the wavelet transform using the Morlet wavelet as a basis function, and the Fourier transform in a sliding window with a width adjusted to be equal to a fixed number of harmonic periods. Findings: The train of oscillations in the level of the D component observed 25.5 h before the EQ on 23 January 2020 is supposed to be associated with the magnetic precursor. The bidirectional pulse in the H component observed on 24 January 2020 could be due to the piston action of the EQ, which had generated an MHD pulse. The quasi-periodic variations in the level of the H and D components of the geomagnetic field, which followed 75 min after the EQ, were caused by a magnetic disturbance produced by the traveling ionospheric disturbances due to the AGWs launched by the EQ. The magnetic effect amplitude was estimated to be close to 0.3 nT, and the quasi-period to be 700-900 s. The amplitude of the disturbances in the electron density in the AGW field was estimated to be about 8 % and the period of 700-900 s. Damping oscillations in both components of the magnetic field were detected to occur with a period of approximately 120 s. This effect is supposed to be due to the shock wave generated in the atmosphere in the course of the EQ. Conclusions: The magnetic variations associated with the EQ and occurring before and during the EQ have been studied in the 1-1000 s period range. Key words: earthquake, fluxmeter magnetometer, quasi-periodic disturbance, seismic wave, acoustic-gravity wave, MHD pulse
Background. The main cause of geomagnetic disturbances is known to be space sources, processes acting in the solar wind and in the interplanetary medium, as well as falling large celestial bodies. Earthquakes also give rise to geomagnetic effects. In accordance with the systems paradigm, the Earth–atmosphere–ionosphere–magnetosphere system comprises the single system where direct and reverse, positive and negative coupling take place. The mechanism of the earthquake effect on the magnetic field is poorly understood. A rock cracking, a fluctuating movement of fluids in pores, a corona discharge of the high-voltage static charge, etc., are thought to be the processes that give rise to the geomagnetic effect. In the course of earthquakes, seismic, acoustic, atmospheric gravity, and magnetohydrodynamic waves are generated, which provide for coupling between the subsystems in the Earth–atmosphere–ionosphere–magnetosphere system. Purpose of Work. The paper describes the possible response in the level of the geomagnetic field to the earthquake of 26 November 2019 that took place in Albania. Techniques and Methodology. The measurements were taken with the fluxmeter magnetometer at the V. N. Karazin Kharkiv National University Magnetometer Observatory. It delivers 0.5 – 500 pT sensistivity in the 1–1000 s period range over a quite large frequency band of 0.001 to 1 Hz. To study the quasi-periodic processes in detail, the systems spectral analysis of the temporal dependences of the horizontal (H, D) geomagnetic field components has been employed. It includes the short-time Fourier transform, the Fourier transform in a sliding window with a width adjusted to be equal to a fixed number of harmonic periods, and wavelet transform, simultaneously. The wavelet transform employs the Morlet wavelet as a basis function. Results. The quasi-periodic variations in the level of the geomagnetic field observed to appear with a 6 min lag and to last for 70–80 min could be due to the earthquake. These disturbances could be transferred by the magnetohydrodynamic waves. The quasi-periodic variations that were observed to appear with a 97–106 min lag and to last for about 130–140 min were most likely due to the earthquake. They were transferred by the atmospheric gravity waves with a period of 7–14 min. A relative disturbance in the electron density in the atmospheric gravity wave field was observed to be approximately 5.3%. The results obtained from observations of Albanian and Turkish earthquakes show agreement. Conclusions: The magnetic variations in the 1–1000 s period range that were observed to occur before and during the earthquake have been studied.
Background. The ionosphere was and will be the main channel for the propagation of radio waves of various bands (from extremely low to super-high frequencies). A feature of this channel is the dependence of its parameters on the state of space weather. Space weather is formed primarily by processes on the Sun and by processes on Earth (to a lesser extent). High-energy processes of man-made origin can also make a certain contribution to the state of space weather. Means of oblique sounding (OS) have significant opportunities for research in the field of geospace radiophysics, study of the channel of propagation of radio waves and dynamic processes in the geospace. In this case, both own radio transmitting devices and a network of broadcasting stations can be used. With the help of OS, it is possible to cover significant regions of the globe (up to global ones), and thereby study the dynamic processes in the geospace over these regions. The purpose of this work is to briefly describe the multi-frequency multiple-path radio system of the OS ionosphere and to illustrate its performance using the example of studying dynamic processes in the geospace. Techniques and Methodology. A coherent multi-frequency multiple-path oblique sounding radio system of the ionosphere is described. It is intended for radiophysical monitoring of dynamic processes in the geospace caused by variations in space weather, the impact on the ionosphere of high-energy sources of space and terrestrial origin. The complex is capable of receiving radio signals in the low-frequency (LF) and high-frequency (HF) ranges. Original software has been developed, depending on the range of tasks to be solved. The number of radio paths and their orientation depend on the specifics of the tasks being solved. The operation of the complex is based on measurements of the Doppler shift of frequency and amplitude or phase and amplitude of the signal. The autoregressive algorithm provides a Doppler frequency resolution of up to 0.02 Hz and a time resolution of 1 min. After obtaining the time dependences of the Doppler spectra, phases and amplitudes for various radio propagation paths, further processing of the time series is performed. Results. At V. N. Karazin Kharkiv National University, a multi-frequency multi-path radio engineering complex for oblique sounding of the ionosphere has been developed and is operating, designed for radiophysical monitoring of dynamic processes in the geospace caused by variations in space weather, the impact on the ionosphere of high-energy sources of space and terrestrial origin. Conclusions. The successful functioning of the complex is demonstrated by the example of studying the dynamic processes in the geospace caused by the action of various sources of energy release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.