The locus of enterocyte effacement is necessary for enteropathogenic Escherichia coli (EPEC) to form attaching and effacing (A/E) lesions. A/E lesions are characterized by intimate bacterial adherence to intestinal cells and destruction of microvilli, which leads to diarrhea. Therefore, studies interrogating the regulation of the locus of enterocyte effacement (LEE) are critical for understanding the molecular epidemiology of EPEC infections and developing interventional strategies. Hitherto, most studies have centered on protein-based regulators, whereas the role of small regulatory RNAs remains underappreciated. Previously, we identified the first sRNAs—MgrR, RyhB, and McaS—that regulate the LEE of EPEC. This study was undertaken to identify additional sRNAs that impact the LEE. Our results suggest that the catabolite-responsive sRNA, Spot42, indirectly controls the LEE by inhibiting synthesis of its inducer, indole. Spot42 base-pairs with the tnaCAB mRNA and presumably destabilizes the transcript, thereby preventing expression of the regulatory and structural proteins that are involved in the import and hydrolysis of tryptophan into indole. The absence of intracellular indole leads to reduced transcription of the LEE1-encoded master transcriptional activator Ler, thereby maintaining the LEE in its silenced state and delaying A/E lesion morphogenesis. Our results highlight the importance of riboregulators that synchronize metabolic and virulence pathways in bacterial infection.