“…In the wake of other disciplines, computer vision has in recent years also benefited from research into deep learning in hyperbolic space. A quickly growing body of literature has shown that hyperbolic embeddings benefit few-shot learning (Fang et al, 2021;Khrulkov et al, 2020;Gao et al, 2021;Guo et al, 2022), zero-shot recognition (Long et al, 2020;Liu et al, 2020;Ghadimi Atigh et al, 2021;Hong et al, 2023b), out-of-distribution generalization (Khrulkov et al, 2020;Hong et al, 2023a;Guo et al, 2022), uncertainty quantification (Khrulkov et al, 2020;Ghadimi Atigh et al, 2022;Chen et al, 2022), generative learning (Kingma & Welling, 2013;Rezende et al, 2014;Lazcano et al, 2021;Heusel et al, 2017), and hierarchical representation learning (Dhall et al, 2020;Long et al, 2020;Gulshad et al, 2023;Liu et al, 2020;Ghadimi Atigh et al, 2022) amongst others. These works show evidence that hyperbolic geometry has a lot of potential for learning in computer vision.…”