Although research on Acoustic Scene Classification (ASC) is very close to, or even overshadowed by different popular research areas known as Automatic Speech Recognition (ASR), Speaker Recognition (SR) or Image Processing (IP), this field potentially opens up several distinct and meaningful application areas based on environment context detection.The challenges of ASC mainly come from different noise resources, various sounds in real-world environments, occurring as single sounds, continuous sounds or overlapping sounds.In comparison to speech, sound scenes are more challenging mainly due to their being unstructured in form and closely similar to noise in certain contexts. Although a wide range of publications have focused on ASC recently, they show task-specific ways that either explore certain aspects of an ASC system or are evaluated on limited acoustic scene datasets. Therefore, the aim of this thesis is to contribute to the development of a robust framework to be applied for ASC, evaluated on various recently published datasets, and to achieve competitive performance compared to the state-of-the-art systems.