2024
DOI: 10.59490/joas.2024.7269
|View full text |Cite
|
Sign up to set email alerts
|

Hidden Markov Models and Flight Phase Identification

Rémi Perrichon,
Xavier Gendre,
Thierry Klein

Abstract: The use of Hidden Markov Models (HMMs) in segmenting flight phases is a compelling approach with significant implications for aviation and aerospace research. It leverages the temporal sequences of flight data to delineate various phases of an aircraft’s journey, making it a valuable tool for enhancing the anal- ysis of flight performance and safety. In this work, we implement a multivariate HMM to identify 6 flight phases: taxi, takeoff, climb, cruise, approach and rollout. We reach a median global accuracy o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?