By employing a recently proposed Hubbard U density-corrected scheme within density functional theory, we provide design principles towards the design of materials exhibiting a spin crossover-assisted gas release. Small molecular fragments are used as case study to identify two main mechanisms behind the change in binding energy upon spin transitions. The feasibility of the proposed mechanism in porous crystals is assessed by correlating the change in binding energy of CO2, CO, N2, and H2, upon spin crossover, with the adiabatic energy difference associated with the spin state change of the square-planar metal in Hofmann-type clathrates (M = Fe, Mn, Ni). A few promising cases are identified for the adsorption of intermediate ligand field strength molecules such as N2 and H2. The latter stands out as the most original result as the strong interaction in low spin, as expected from a Kubas mechanism, results in a large change in binding energy. This work provides a general perspective towards the engineering of open-metal site frameworks exhibiting local environments designed to have a spin crossover upon adsorption of specific gas molecules.