“…[285] Therefore, not Ti 3 C 2 T x /LDH Hydrolysis 6 m KOH 1061 F g −1 at 1 A g −1 70% (4 A g −1 , 4000 cycles) [187] PANI/TiO 2 /Ti 3 C 2 T x Hydrothermal and solution mixing 1 m KOH 108.9 F g −1 at 0.5 A g −1 90% (1 A g −1 , 8000 cycles) [186] Ti 3 C 2 T x /PFDs Agitation-assisted polymerization 1 m H 2 SO 4 340 F g −1 at 5 mV s −1 100% (20 mV s −1 , 10 000 cycles) [212] Ti 3 C 2 T x /PPy Agitation-assisted polymerization 1 m H 2 SO 4 416 F g −1 at 5 mV s −1 92% (100 mV s −1 , 25 000 cycles) [73] Ti 3 C 2 T x /PPy Electrochemical polymerization 0.5 m H 2 SO 4 406 F g −1 at 1 mA cm −2 100% (1 mA cm −2 , 20 000 cycles) [202] www.advmatinterfaces.de surprisingly, MXene/metal oxides composites [64,165,166,171,176,184] and MXene/conductive polymers composites have been used as the electrode materials of supercapacitors. [285] Therefore, not Ti 3 C 2 T x /LDH Hydrolysis 6 m KOH 1061 F g −1 at 1 A g −1 70% (4 A g −1 , 4000 cycles) [187] PANI/TiO 2 /Ti 3 C 2 T x Hydrothermal and solution mixing 1 m KOH 108.9 F g −1 at 0.5 A g −1 90% (1 A g −1 , 8000 cycles) [186] Ti 3 C 2 T x /PFDs Agitation-assisted polymerization 1 m H 2 SO 4 340 F g −1 at 5 mV s −1 100% (20 mV s −1 , 10 000 cycles) [212] Ti 3 C 2 T x /PPy Agitation-assisted polymerization 1 m H 2 SO 4 416 F g −1 at 5 mV s −1 92% (100 mV s −1 , 25 000 cycles) [73] Ti 3 C 2 T x /PPy Electrochemical polymerization 0.5 m H 2 SO 4 406 F g −1 at 1 mA cm −2 100% (1 mA cm −2 , 20 000 cycles) [202] www.advmatinterfaces.de surprisingly, MXene/metal oxides composites [64,165,166,171,176,184] and MXene/conductive polymers composites have been used as the electrode materials of supercapacitors.…”