The installation of remotely-operated service robots in the environments of our daily life (including offices, homes, and hospitals) can improve work-from-home policies and enhance the quality of the so-called new normal. However, it is evident that remotely-operated robots must have partial autonomy and the capability to learn and use local semiotic knowledge. In this paper, we argue that the development of semiotically adaptive cognitive systems is key to the installation of service robotics technologies in our service environments. To achieve this goal, we describe three challenges: the learning of local knowledge, the acceleration of onsite and online learning, and the augmentation of human-robot interactions.