Purpose
This paper aims to propose a one-layer Mamdani hierarchical fuzzy system (HFS) to navigate autonomously an omnidirectional mobile robot to a target with a desired angle in unstructured environment. To avoid collision with unknown obstacles, Mamdani limpid hierarchical fuzzy systems (LHFS) are developed based on infrared sensors information and providing the appropriate linear speed controls.
Design/methodology/approach
The one-layer Mamdani HFS scheme consists of three fuzzy logic units corresponding to each degree of freedom of the holonomic mobile robot. This structure makes it possible to navigate with an optimized number of rules. Mamdani LHFS for obstacle avoidance consists of a number of fuzzy logic units of low dimension connected in a hierarchical structure. Hence, Mamdani LHFS has the advantage of optimizing the number of fuzzy rules compared to a standard fuzzy controller. Based on sensors information inputs of the Mamdani LHFS, appropriate linear speed controls are generated to avoid collision with static obstacles.
Findings
Simulation results are performed with MATLAB software in interaction with the environment test tool “Robotino Sim.” Experiments have been done on an omnidirectional mobile robot “Robotino.” Simulation results show that the proposed approaches lead to satisfied performances in navigation between static obstacles to reach the target with a desired angle and have the advantage that the total number of fuzzy rules is greatly reduced. Experimental results prove the efficiency and the validity of the proposed approaches for the navigation problem and obstacle avoidance collisions.
Originality/value
By comparing simulation results of the proposed Mamdani HFS to another navigational controller, it was found that it provides better results in terms of path length in the same environment. Moreover, it has the advantage that the number of fuzzy rules is greatly reduced compared to a standard Mamdani fuzzy controller. The use of Mamdani LHFS in obstacle avoidance greatly reduces the number of involved fuzzy rules and overcomes the complexity of high dimensionality of the infrared sensors data information.