2021
DOI: 10.1007/s10651-021-00514-3
|View full text |Cite
|
Sign up to set email alerts
|

Hierarchical log Gaussian Cox process for regeneration in uneven-aged forests

Abstract: We propose a hierarchical log Gaussian Cox process (LGCP) for point patterns, where a set of points $$\varvec{x}$$ x affects another set of points $$\varvec{y}$$ y but not vice versa. We use the model to investigate the effect of large trees on the locations of seedlings. In the model, every point in $$\varvec{x}$$ x … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 48 publications
(64 reference statements)
0
1
0
1
Order By: Relevance
“…The proposed models which are Log Gaussian Cox Processes (or models) are already existing spatiotemporal models. These are commonly used in ecology [7], geography [8], and climate related research [9]. The uniqueness of our approach is to apply all of the model parameters to the epidemiological setting.…”
Section: Literature Reviewmentioning
confidence: 99%
“…The proposed models which are Log Gaussian Cox Processes (or models) are already existing spatiotemporal models. These are commonly used in ecology [7], geography [8], and climate related research [9]. The uniqueness of our approach is to apply all of the model parameters to the epidemiological setting.…”
Section: Literature Reviewmentioning
confidence: 99%
“…El escalado adecuado hace que el análisis sea invariante a la resolución de la cuadrícula. Kuronen et al (2022) muestran un LGCP jerárquico, en el que un conjunto de puntos afecta a otro, pero no a la inversa. Hessellund et al (2020) exponen un método de validación cruzada para la selección de modelos y un algoritmo para la inferencia regularizada.…”
Section: Introductionunclassified