2019 6th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE) 2019
DOI: 10.1109/icitacee.2019.8904425
|View full text |Cite
|
Sign up to set email alerts
|

Hierarchical Multi-label Classification to Identify Hate Speech and Abusive Language on Indonesian Twitter

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
11
1
15

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 17 publications
(27 citation statements)
references
References 3 publications
0
11
1
15
Order By: Relevance
“…Prabowo et.al [20] proposed a classification process to recognize Indonesian abusive comments and hate speech on Twitter by implementing SVM. From the result, it was discovered that SVM with the help of the word unigram feature yields quite good results compared to other methods.…”
Section: Related Workmentioning
confidence: 99%
“…Prabowo et.al [20] proposed a classification process to recognize Indonesian abusive comments and hate speech on Twitter by implementing SVM. From the result, it was discovered that SVM with the help of the word unigram feature yields quite good results compared to other methods.…”
Section: Related Workmentioning
confidence: 99%
“…Penelitian sebelumnya yang membahas mengenai multilabel ujaran kebencian pada teks Twitter telah dilakukan menggunakan algoritma Support Vector Machine (SVM) [9]. Penelitian ini menerapkan desain Hierarchical Multi-Label Classification (HMC) dalam melakukan pengujiannya.…”
Section: Metodologi Penelitian 21 Literatur Reviewunclassified
“…Lebih detail mengenai gambaran hirarki label pada dataset yang digunakan dapat dilihat pada Gambar 1. Penelitian pada literatur [9] berhasil mendapatkan akurasi terbaik sebesar 68,43%. Akurasi ini didapatkan dengan mereduksi jumlah label dari 12 menjadi 9.…”
Section: Metodologi Penelitian 21 Literatur Reviewunclassified
See 1 more Smart Citation
“…Much work on the toxic comments detection been carried out regarding different data sources. For example, Prabowo and colleagues evaluated Naive Bayes (NB), Support Vector Machine (SVM), and Random Forest Decision Tree (RFDT) algorithms for detecting hate speech and abusive language on Indonesian Twitter [34]. The experimental results demonstrated an accuracy of 68.43% for the hierarchical approach with word uni-gram features and the SVM model.…”
Section: Related Workmentioning
confidence: 99%