2024
DOI: 10.1609/aaai.v38i15.29605
|View full text |Cite
|
Sign up to set email alerts
|

Hierarchical Multi-Marginal Optimal Transport for Network Alignment

Zhichen Zeng,
Boxin Du,
Si Zhang
et al.

Abstract: Finding node correspondence across networks, namely multi-network alignment, is an essential prerequisite for joint learning on multiple networks. Despite great success in aligning networks in pairs, the literature on multi-network alignment is sparse due to the exponentially growing solution space and lack of high-order discrepancy measures. To fill this gap, we propose a hierarchical multi-marginal optimal transport framework named HOT for multi-network alignment. To handle the large solution space, multiple… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 37 publications
0
0
0
Order By: Relevance