Reconfigurable structures that are enabled through the integration of multiple materials are important for future design and manufacturing practice. We investigate one of such reconfigurable structures — an origami sheet, which can be designed based on a 3D object and unfolded into a 2D sheet with complex creases. A fabrication approach based on a hybrid manufacturing process by integrating layer-based additive manufacturing and silicon molding techniques is developed. Related challenges on designing creases for given folding requirements and the related material properties are discussed. A novel structure design is presented to ensure the fabricated creases that are in soft materials can be folded and unfolded without failures. The design method can be applied to different scale levels. The origami sheets for test cases in different complexity have been tested. The experimental results illustrate that the designed and fabricated origami sheets can be folded and used for product components with reconfigurable shapes.