Conventionally, heterogeneous object modeling methods paid limited attention to the concurrent modeling of geometry design and material composition distribution. Procedural method was normally employed to generate the geometry first and then determine the heterogeneous material distribution, which ignores the mutual influence. Additionally, limited capability has been established about irregular material composition distribution modeling with strong local discontinuities. This article overcomes these limitations by developing the computer-aided design-computer-aided engineering associative feature-based heterogeneous object modeling method. Level set functions are applied to model the geometry within computer-aided design module, which enables complex geometry modeling. Finite element mesh is applied to store the local material compositions within computer-aided engineering module, which allows any local discontinuities. Then, the associative feature concept builds the correspondence relationship between these modules. Additionally, the level set geometry and material optimization method are developed to concurrently generate the geometry and material information which fills the contents of the computer-aided design-computer-aided engineering associative feature model. Micro-geometry is investigated as well, instead of only the local material composition. A few cases are studied to prove the effectiveness of this new heterogeneous object modeling method.
KeywordsComputer-aided design-computer-aided engineering associative feature, heterogeneous object modeling, level set, geometry and material optimization Date