“…Therefore, intelligent and innovative algorithms are in dire need for high success of automatic building extraction and modelling. This Special Issue focuses on the newly-developed methods for classification and feature extraction from remote sensing data for automatic building extraction and 3D roof modelling.In the Special Issue, the published papers cover a wide range of related topics including building detection [3], boundary extraction [4] and regularization [5], 3D indoor space (room) modelling [6], land cover classification [7], building height model extraction [8], 3D roof modelling [6,9] and change detection [9].In terms of datasets, some of the published works use publicly available benchmark datasets, e.g., ISPRS (International Society for Photogrammetry and Remote Sensing) urban object extraction and modelling datasets [4,5,10]; ISPRS 2D semantic labelling datasets [1]; Inria aerial image labelling benchmark datasets [11][12][13]; and IEEE (Institute of Electrical and Electronics Engineers) DeepGlobe Satellite Challenge datasets [14].The proposed methods fall into two main categories depending the use of the input data sources: Methods based on single source data, and methods that use multi-source data. Methods based on single source data can use point cloud data [9], aerial imagery [4] and digital surface models (DSM) [8].…”