The catalyst is the pivotal component in CO2 electroreduction systems for converting CO2 into valuable products. Carbon-based single-atom materials (CSAMs) have emerged as promising catalyst candidates due to their low cost and high atomic utilization efficiency. The rational design of the morphology and microstructure of such materials is desirable but poses a challenge. Here, we employed different Mg(OH)2 templates to guide the fabrication of two kinds of amorphous nitrogen-doped carbon nanosheet-supported Fe single atoms (FeSNC) with rough and flat surface structures. In comparison to flat FeSNC with saturated FeN4 sites, the rough FeSNC (R-FeSNC) exhibited unsaturated FeN4−x sites and contracted Fe-N bond length. The featured structure endowed R-FeSNC with superior capacity of catalyzing CO2 reduction reaction, achieving an exceptional CO selectivity with Faradaic efficiency of 93% at a potential of −0.66 V vs. RHE. This study offers valuable insights into the design of CSAMs and provides a perspective for gaining a deeper understanding of their activity origins.