Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Smart-home systems represent the future of modern building infrastructure as they integrate numerous devices and applications to improve the overall quality of life. These systems establish connectivity among smart devices, leveraging network technologies and algorithmic controls to monitor and manage physical environments. However, ensuring robust security in smart homes, along with securing smart devices, presents a formidable challenge. A substantial number of security solutions for smart homes rely on data-driven approaches (e.g., machine/deep learning) to identify and mitigate potential threats. These approaches involve training models on extensive datasets, which distinguishes them from knowledge-driven methods. In this review, we examine the role of knowledge within smart homes, focusing on understanding and reasoning regarding various events and their utility towards securing smart homes. We propose a taxonomy to characterize the categorization of decision-making approaches. By specifying the most common vulnerabilities, attacks, and threats, we can analyze and assess the countermeasures against them. We also examine how smart homes have been evaluated in the reviewed literature. Furthermore, we explore the challenges inherent in smart homes and investigate existing solutions that aim to overcome these limitations. Finally, we examine the key gaps in smart-home-security research and define future research directions for knowledge-driven schemes.
Smart-home systems represent the future of modern building infrastructure as they integrate numerous devices and applications to improve the overall quality of life. These systems establish connectivity among smart devices, leveraging network technologies and algorithmic controls to monitor and manage physical environments. However, ensuring robust security in smart homes, along with securing smart devices, presents a formidable challenge. A substantial number of security solutions for smart homes rely on data-driven approaches (e.g., machine/deep learning) to identify and mitigate potential threats. These approaches involve training models on extensive datasets, which distinguishes them from knowledge-driven methods. In this review, we examine the role of knowledge within smart homes, focusing on understanding and reasoning regarding various events and their utility towards securing smart homes. We propose a taxonomy to characterize the categorization of decision-making approaches. By specifying the most common vulnerabilities, attacks, and threats, we can analyze and assess the countermeasures against them. We also examine how smart homes have been evaluated in the reviewed literature. Furthermore, we explore the challenges inherent in smart homes and investigate existing solutions that aim to overcome these limitations. Finally, we examine the key gaps in smart-home-security research and define future research directions for knowledge-driven schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.